Set 4: Game-Playing

ICS 271 Fall 2014
Kalev Kask

Overview

« Computer programs that play 2-player games
— game-playing as search
— with the complication of an opponent

« General principles of game-playing and search
— game tree
— minimax principle; impractical, but theoretical basis for analysis
— evaluation functions; cutting off search; replace terminal leaf utility fn with eval fn
— alpha-beta-pruning
— heuristic techniques
— games with chance

« Status of Game-Playing Systems

— in chess, checkers, backgammon, Othello, etc, computers routinely defeat
leading world players

« Motivation: multiagent competitive environments
— think of “nature” as an opponent
— economics, war-gaming, medical drug treatment

Types of games

deterministic chance

perfect information chess, checkers, backgammon
go, othello monopoly
imperfect information bridge, poker, scrabble
nuclear war

Not Considered: Physical games like tennis, croquet,
ice hockey, etc.
(but see “robot soccer” http://www.robocup.org/)

Search versus Games

« Search —no adversary
— Solution is a part from start to goal, or a series of actions from start to goal
— Heuristics and search techniques can find optimal solution
— Evaluation function: estimate of cost from start to goal through given node
— Actions have cost
— Examples: path planning, scheduling activities

« (Games - adversary
— Solution is strategy
* strategy specifies move for every possible opponent reply.
— Time limits force an approximate solution
— Evaluation function: evaluate “goodness” of game position
— Board configurations have utility
— Examples: chess, checkers, Othello, backgammon

Solving 2-player Games

Two players, fully observable environments, deterministic, turn-taking,
zero-sum games of perfect information

Examples: e.g., chess, checkers, tic-tac-toe
Configuration of the board = unique arrangement of “pieces”
Statement of Game as a Search Problem:

— States = board configurations

— Operators = legal moves. The transition model

— Initial State = current configuration

— Goal =winning configuration

— payoff function (utility)= gives numerical value of outcome of the game

Two players, MIN and MAX taking turns. MIN/MAX will use search tree to
find next move

A working example: Grundy's game

— Given a set of coins, a player takes a set and divides it into two unequal
sets. The player who cannot do uneven split, looses.

— What is a state? Moves? Goal?

Grundy’s game - special case of nim

...

3-3-1

3 0 \ 1
MIN SRR 224141 |

N
A 0
MAX 2-1-1-1-1-1

Figure 4.14 Exhaustive minimax for the game of nim.

' : Bold lines indicate forced win for MAX, Each
node is marked with its derived value (0 or 1)
under minimax.

Game Trees: Tic-tac-toe

MAX (X)
X X X
MIN (O) X X X
X X X
x]o x| To] [x
MAX (X) o
x|o[x] [x|o x/o
MIN (0) X X
xJo[x] [xJo[x] [x]o[x
TERMINAL o[x] [o]o[x X
0 x| x|o] [x]olo
~ Utility 5y 0 +1

Figure 5.1 A (partial) search tree for the game of Tic-Tac-Toe. The top node is the initial
state, and MAX moves first, placing an X in some square. We show part of the search tree, giving
alternating moves by MIN (0) and MAX, until we eventually reach terminal states, which can be
assigned utilities according to the rules of the game.

How do we search this tree to find the optimal move?

The Minimax Algorithm

« Designed to find the optimal strategy or just best first move for MAX
— Optimal strategy is a solution tree

Brute-force:
— 1. Generate the whole game tree to leaves
— 2. Apply utility (payoff) function to leaves
— 3. Back-up values from leaves toward the root:
« a Max node computes the max of its child values
« a Min node computes the min of its child values

— 4. \When value reaches the root: choose max value and the
corresponding move.

Minimax:
Search the game-tree in a DFS manner to find the value of the root.

Game Trees

MAX

MIN

Figure 52 A two-ply game tree as generated by the minimax algorithm. The A nodes are
moves by MAX and the V nodes are moves by MIN. The terminal nodes show the utility value for
MAX computed by the utility function (i.e., by the rules of the game), whereas the utilities of the

other nodes are computed by the minimax algorithm from the utilities of their successors. MAX’s
best move is A;, and MIN’s bestreply is Aj;.

Two-Ply Game Tree

MAX

MIN

Two-Ply Game Tree

MAX

MIN

Two-Ply Game Tree

Minimax maximizes the utility for the worst-case outcome for max

The minimax decision 3
MAX

A - A

1 2 3
MIN T@

A A | A

11

A A A

13

A solution tree is highlighted

Properties of minimax

Complete?
— Yes (if tree is finite).

Optimal?
— Yes (against an optimal opponent).
— Can it be beaten by an opponent playing sub-optimally?
* No. (Why not?)

Time complexity?
— O(bm)

Space complexity?
— O(bm) (depth-first search, generate all actions at once)
— O(m) (backtracking search, generate actions one at a time)

Game Tree Size

« Tic-Tac-Toe
— b =5 legal actions per state on average, total of 9 plies in game.
« “ply” = one action by one player, “move” = two plies.
— 59=1,953,125
— 91 =362,880 (Computer goes first)
— 8! =40,320 (Computer goes second)
- exact solution quite reasonable

 Chess
— b = 35 (approximate average branching factor)
— d =100 (depth of game tree for “typical” game)
— bd= 35100 = 10154 nodes!!
-> exact solution completely infeasible

« Itis usually impossible to develop the whole search tree. Instead develop
part of the tree up to some depth and evaluate leaves using an evaluation fn

 Optimal strategy (solution tree) too large to store.

Static (Heuristic) Evaluation Functions

An Evaluation Function:
— Estimates how good the current board configuration is for a player.

— Typically, one figures how good it is for the player, and how good it
is for the opponent, and subtracts the opponents score from the
player.

— Othello: Number of white pieces - Number of black pieces

— Chess: Value of all white pieces - Value of all black pieces
Typical values from -infinity (loss) to +infinity (win) or [-1, +1].
If the board evaluation is X for a player, it’s -X for the opponent
Example:

— Evaluating chess boards,

— Checkers

— Tic-tac-toe

Applying MiniMax to tic-tac-toe

The static evaluation function heuristic

X has 6 possible win paths: -

O has 5 possible wins: b
E(n)=6-5=1 ._.‘*

O'“‘f' =

X has 4 possible win paths;
X0 O has 6 possible wins

E(n)=4-63-2

[e) X has S possible win paths:
X O has 4 possible wins

E(nN)=5-4=1

Heuristic is E(n) = M(n) — O(n
where M(n) is the total of My possible winning lines
O(n) is total of Opponent's possible winning lines
E(n) is the total Evaluation for state n

Figure 4.16 Heuristic measuring conflict applied to states
" of tic-tac-toe.

Backup Values

@ Start

node

| MAX's move
\ :

@ . ®

®, ®
O O
6-5=1 5-5=06-5=1 5-5=04-5=-1 5-4=1 6-4=2

©,
X X])
5-6=-15-5=05-6=-16-6=04-6=-2

Figure 4.17 Two-ply minimax applied to the opening
move of tic-tac-toe.

O,
- Oz

X

1
4-2=2 3-2=15-2=33-2=14-2=2 3-2=1

o of & & 3 & of

4-3=13-3=05-3=23-3=04-3=14-3=1

4:3=1 4-3=13-3=20

Figure 4.18 Two-ply minimax applied to X's second
move of tic-tac-toe.

MAX's move

O

Start
node

A N~
&

3-2=12-2=0 3-2

=1

i}

O
2-*812v1l12-1=1

ey

2-1=1 3:-122 3-1=2

—oa

x| |

2o

2-2=02-2=03-2=1

Figure 4.19 Two-ply minimax applied to X's move near

end game.

Evaluation functions

White to move

White slightly better Black winning
For chess, typically linear weighted sum of features
Eval(s) = wyf1(s) + wafo(s) + ... + wyfuls)

e.g., w1 = 9 with

f1(s) = (number of white queens) — (number of black queens), etc.

Chapler 5, Sections 1-5

Digression: Exact values don’t matter

MAX
MIN ‘R 1& 20
4 1 0 2 400

Behaviour is preserved under any monotonic transformation of EVAL

Only the order matters:
payoff in deterministic games acts as an ordinal utility function

Chapler 5, Seclions 1-5 15

Alpha-Beta Pruning
Exploiting the Fact of an Adversary

If a position is provably bad:

— Itis NO USE expending search time to find out exactly how bad, if
you have a better alternative

If the adversary can force a bad position:

— Itis NO USE expending search time to find out the good positions
that the adversary won't let you achieve anyway

Bad = not better than we already know we can achieve elsewhere.

Contrast normal search:
— ANY node might be a winner.
— ALL nodes must be considered.
— (A* avoids this through knowledge, i.e., heuristics)

Alpha Beta Procedure

« ldea:
— Do depth first search to generate partial game tree,
— Give static evaluation function to leaves,
— Compute bound on internal nodes.
* a, pbounds:
— o value for max node means that max real value is at least a.
— B for min node means that min can guarantee a value no more than .
« Computation:
— o of MAX node is the max of children seen.
— B of MIN node is the min of children seen.
— Update o/ when backup values are propagated.

Alpha-Beta Example

Do DF-search until first leaf

Range of possible values

MAX

Figure 52 A two-ply game tree as generated by the minimax algorithm. The A nodes are
moves by MAX and the V nodes are moves by MIN. The terminal nodes show the utility value for
MAX computed by the utility function (i.e., by the rules of the game), whereas the utilities of the

other nodes are computed by the minimax algorithm from the utilities of their successors. MAX's
best move is A, and MIN’s best reply is Aj;.

Alpha-Beta Example (continued)

MAX

Alpha-Beta Example (continued)

MAX

MIN

Alpha-Beta Example (continued)

MAX

MIN

Alpha-Beta Example (continued)

3
MAX 300 NP
This node 1is
worse for MAX

MIN

Alpha-Beta Example (continued)

MAX

MIN

Alpha-Beta Example (continued)

MIN

AKX

MIN

Alpha-Beta Example (continued)

[3.3]

AKX

MIN

Alpha-Beta Example (continued)

33] V3 [%2] 2,21/ 5% g 2

Tic-Tac-Toe Example with Alpha-Beta Pruning

®

@

Backup Values

X X
Q o

O O
6-5=15-5=06-5=15-5=04-5=-1

Start
node

| MAX's move
o

5-4=1 6-4=2

Q

Q

o

: [
X
5-6=-1\5-5=05-6=-16-6=04-6=-

:

Figure 4.17 Two-ply minimax applied to the opening
move of tic-tac-toe.

Alpha-beta Algorithm

« Depth first search
— only considers nodes along a single path from root at any time

o = highest-value choice found at any choice point of path for MAX
(initially, oo = =infinity)

B = lowest-value choice found at any choice point of path for MIN
(initially, p = +infinity)

« Pass current values of a and B down to child nodes during search.
« Update values of a and B during search:

— MAX updates o at MAX nodes

— MIN updates 3 at MIN nodes
 Prune remaining branches at a node when a2 f8

When to Prune

* Prune whenever a 2 f3.

— Prune below a Max node whose alpha value becomes greater than
or equal to the beta value of its ancestors.

 Max nodes update alpha based on children’s returned values.

— Prune below a Min node whose beta value becomes less than or
equal to the alpha value of its ancestors.

« Min nodes update beta based on children’s returned values.

Alpha-Beta Example Revisited

Do DF-search until first leaf
a, [, initial values
o——00

MAX B =+

a, 3, passed to children

MIN

Alpha-Beta Example (continued)

MAX

OoL=—00

p=3

MIN updates 5, based on children

MIN

Alpha-Beta Example (continued)

OoL=—00

MAX

NI OL.=—00
B =3

MIN updates 5, based on children.
No change.

Alpha-Beta Example (continued)

MAX updates o, based on children.
o=3
B =+

MAX

3 s returned
as node value.

MIN

Alpha-Beta Example (continued)

MAX

a, 3, passed to children

MIN V Bzt

Alpha-Beta Example (continued)

MAX
MIN updates f,
based on children.
=3
MIN B =2

Alpha-Beta Example (continued)

MAX

a2 f,

SO prune.

MIN

Alpha-Beta Example (continued)

MAX updates «, based on children.

No change. —
MAX =3
2 is returned
as node value.
MIN <2

Alpha-Beta Example (continued)

MAX

Wssed to children

MIN

Alpha-Beta Example (continued)

=3
MAX
MIN updates f,
based on children.
=3
MIN

B =14

MIN

Alpha-Beta Example (continued)

a=3
B =+o0
MIN updates f,
based on children.
o=3
V3 \/ €2 \/ B =5

ANNVANRYANIVANED G SRVANA

Alpha-Beta Example (continued)

AKX

MIN

2 is returned

as node value.

Alpha-Beta Example (continued)

Max calculates the
same node value, and
makes the same move!

AKX

MIN

Alpha Beta Practical Implementation

ldea:
— Do depth first search to generate partial game tree
— Cutoff test :
* Depth limit
* lterative deepening
 Cutoff when no big changes (quiescent search)
— When cutoff, apply static evaluation function to leaves
— Compute bound on internal nodes.
— Run a-B pruning using estimated values

Effectiveness of Alpha-Beta Search

e Worst-Case

— Branches are ordered so that no pruning takes place. In this case alpha-beta
gives no improvement over exhaustive search

« Best-Case
— Each player’s best move is the left-most alternative (i.e., evaluated first)
— In practice, performance is closer to best rather than worst-case
« E.g., sort moves by the remembered move values found last time.
« E.g., expand captures first, then threats, then forward moves, etc.
« E.g., run Iterative Deepening search, sort by value last iteration.

« Alpha/beta best case is O(b@2) rather than O(b9)
— This is the same as having a branching factor of sqgrt(b),
« (sgrt(b))d = bl@? (i.e., we have effectively gone from b to square root of b)
— Inchessgofromb~35 to b~6
« permitting much deeper search in the same amount of time
— In practice it is often b(d/3)

Final Comments about Alpha-Beta Pruning

Pruning does not affect final results

Entire subtrees can be pruned.

Good move ordering improves effectiveness of pruning

Repeated states are again possible.
— Store them in memory = transposition table

— Even in depth-first search we can store the result of an evaluation
In a hash table of previously seen positions. Like the notion of
“explored” list in graph-search

Example

-which nodes can be pruned?

Answer to Example

Max -which nodes can be pruned?
Min
3 4 1 2 7 g b5 6

Answer: NONE! Because the most favorable nodes for both are
explored last (i.e., in the diagram, are on the right-hand side).

Second Example
(the exact mirror image of the first example)

-which nodes can be pruned?

Answer to Second Example
(the exact mirror image of the first example)

-whi 2
Max which nodes can be pruned

Min

A AAD

6 5 8 X 2 X X

Answer: LOTS! Because the most favorable nodes for both are
explored first (1.e., in the diagram, are on the left-hand side).

Heuristics and Game Tree Search: limited horizon

The Horizon Effect

— sometimes there’s a major “effect” (such as a piece being captured)
which is just “below” the depth to which the tree has been expanded.

— the computer cannot see that this major event could happen because it
has a “limited horizon”.

— there are heuristics to try to follow certain branches more deeply to detect
such important events

— this helps to avoid catastrophic losses due to “short-sightedness”
— push unavoidable large neg events “over” the horizon at additional cost

Heuristics for Tree Exploration
— it may be better to explore some branches more deeply in the allotted
time
— various heuristics exist to identify “promising” branches
Search versus lookup tables
— (e.g., chess endgames)

lterative (Progressive) Deepening

In real games, there is usually a time limit T on making a move

How do we take this into account?

Using alpha-beta we cannot use “partial” results with any
confidence unless the full breadth of the tree has been searched

— So, we could be conservative and set a conservative depth-limit
which guarantees that we will find a move intime <T

 disadvantage is that we may finish early, could do more search

In practice, iterative deepening search (IDS) is used
— IDS runs depth-first search with an increasing depth-limit

— when the clock runs out we use the solution found at the previous
depth limit

Multiplayer Games

O move
A (1,2,6)
B (1,2,6)[| (1,5.2)

T~

C (1,2, 6) 6,1,2) (1,5.2) (5,4, 5)

8 N AN AN aN

(1,2,6) (4,2,3) (6,1,2) (7,4,1) (5,1,1) (1,5,2) (7,7,1) (5,4,5)

A

* Multiplayer games often involve alliances: If A and B are in a weak position they can
collaborate and act against C

« If games are not zero-sum, collaboration can also occur in two-game plays: if (1000,1000 _
Is a best payoff for both, then they will cooperate towards getting there and not towards minimax value.

Nondeterministic games: backgammon

0 1 2 3 4 5 6 7 8 9 1011 12

In real life there are
S many unpredictable
external events

A game tree in Backgammon
must include chance nodes

25 24 23 22 21 20 19 18 17 16 15 14 13

Chapler 5, Seclions 1-5 i

Schematic Game Tree for Backgammon Position

MAX

CHANCE () O

MIN \/

CHANCE

1/36 118
1,1 1,2

MAax A

TERMINAL 2

How do we evaluate good move?
By expected utility leading to
expected minimax

Utility for max is highest expected
value of child nodes

Utility of min-nodes is the lowest
expected value of child nodes

Chance node take the expected
value of their child nodes.

Algorithm for nondeterministic games

EXPECTIMINIMAX gives perfect play

Just like MINIMAX, except we must also handle chance nodes:

if state is a MAX node then

return the highest EXPECTIMINIMAX-VALUE of SUCCESSORS(state)
if stale is a MIN node then

return the lowest EXPECTIMINIMAX-VALUE of SUCCESSORS(state)
if state is a chance node then

return average of EXPECTIMINIMAX- VALUE of SUCCESSORS(state)

Evaluation functions for stochastic games

MAX

CHANCE 2.1

MIN

2 2 3 3 1 1 4 4 20 20 30 30 1 1 400 400

« Sensitivity to the absolute values
« The evaluation function should related to the probability of
winning from a position, or to the expected utility from the position
o Complexity: O((bn)*m) where m is the depth and n is branching of chance nodes

Pruning in nondeterministic game trees

A version of a-3 pruning is possible:

Pruning in nondeterministic game trees

A version of a-3 pruning is possible:

Pruning in nondeterministic game trees

A version of a-3 pruning is possible:

Pruning in nondeterministic game trees

A version of a-3 pruning is possible:

Pruning in nondeterministic game trees

A version of a-3 pruning is possible:

Pruning in nondeterministic game trees

A version of a-3 pruning is possible:

Chapler 5, Seclions 1-5

Pruning in nondeterministic game trees

A version of a-3 pruning is possible:

Chapler 5, Seclions 1-5

Pruning in nondeterministic game trees

A version of a-3 pruning is possible:

An alternative: Monte Carlo simulations:
Play thousands of games of the program against itself

Using random dice rolls. Record the percentage of win
From a position.

Chapler 5, Secliong

Monte Carlo Tree Search (MCTS)

Game tree very large, accurate eval fn not available. Example GO
MC simulation/sampling
— Many thousands of random self-play games
— At the end of each simulation, update node/edge values
Build a tree
— incrementally : each simulation add highest non-tree node to tree
— asymmetrically: pursue promising moves

At each node, solve n-armed bandit problem
— exploitation vs exploration :
— minimize regret (]
Tree policy : select child/action using edge values X, + C*sqrt(In(N)/N;)
— X, = exploitation term, C*sqrt(In(N)/N;) = exploration term
Default policy : MC simulation
winrate values of nodes will converge to minmax values, as N—«
When time is up, use a move with highest winrate
Advantage — don’t need any heuristic fn

-,

Summary

Game playing is best modeled as a search problem
Game trees represent alternate computer/opponent moves

Evaluation functions estimate the quality of a given board configuration
for the Max player.

Minimax is a procedure which chooses moves by assuming that the
opponent will always choose the move which is best for them

Alpha-Beta is a procedure which can prune large parts of the search
tree and allow search to go deeper

For many well-known games, computer algorithms based on heuristic
search match or out-perform human world experts.

Stochastic games
Partially observable games

Reading:R&N Chapter 5.

Deterministic games in practice

Checkers: Chinook ended 40-year-reign of human world champion Marion
Tinsley in 1994. Used an endgame database defining perfect play for all
positions involving 8 or fewer pieces on the board, a total of 443,748,401,247
positions.

Chess: Deep Blue defeated human world champion Gary Kasparov in a six-
game match in 1997. Deep Blue searches 200 million positions per second,
uses very sophisticated evaluation, and undisclosed methods for extending
some lines of search up to 40 ply.

Othello: human champions refuse to compete against computers, who are
too good.

Go: human champions refuse to compete against computers, who are too
bad. In go, b > 300, so most programs use pattern knowledge bases to
suggest plausible moves.

Chapler 5, Seclions 1-5 25

